Preparing Climate Action
Planning: Prioritizing Actions
Table Exercises

August 3, 2023

CAPI Westchester is funded by the NYS Department of Environmental Conservation and is a partnership between Westchester County, HVRC, and ICLEI.
What We’ll Do

Intro: Stakeholder engagement in Climate Planning (5 min.)

Table Exercise 1 (15 min.)

Prioritizing for Highly Effective Implementation (10 min.)

Table Exercise 2 with Report Out (10 min. + 3 min per group)
Part 1: Stakeholder Engagement in Government Operations
Climate Planning
Establishing Reduction Targets

- **GHG Inventory** reveals current emissions
- **A Forecast** projects future emissions
- **A Target allows a local government to quantify its commitment** to fighting climate change.

1. Include clear dates (targets and baselines)
2. Emissions levels (%),
3. GHGs covered (CO$_2$ only or all GHGs measured in CO$_2$-equivalent (CO$_2$e))

Actions are designed to meet your targets!
City of Albany

Village of Nyack
City of Albany

HIA Overview

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Net Reduction (MT CO2e)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Decarbonization</td>
<td>CES</td>
<td>112,757</td>
<td>Clean Energy Standard: 80% Reduction in carbon intensity (kg CO2/MWh) by 2030.</td>
</tr>
<tr>
<td>High Level VMT Reduction</td>
<td>Aggressive (10% VMT Reduction)</td>
<td>35,606</td>
<td>10% Reduction in total VMT</td>
</tr>
<tr>
<td>On-Road Electric Vehicles Adoption</td>
<td>Moderate (4.5% Annual Growth)</td>
<td>70,529</td>
<td>22.5% of VMT is EV by 2030. This action influences an increase in Residential & Commercial buildings electricity emissions.</td>
</tr>
<tr>
<td>Commercial Building Efficiency</td>
<td>IECC New + 10% Existing</td>
<td>6,199</td>
<td>All new buildings and 1% of existing Sq FT (renovations and turnover) will meet IECC 2018 (36.95% reduction in building EUI) & 10% Existing Sq FT (renovations and turnover) EUI is reduced by 20%.</td>
</tr>
<tr>
<td>Residential Building Efficiency</td>
<td>10% EB Renovated</td>
<td>1,136</td>
<td>10% of all SF (existing) per year is reduced by 20% (energy)</td>
</tr>
<tr>
<td>Commercial Building Electrification</td>
<td>New + 6% EB Electrified</td>
<td>220,718</td>
<td>All new buildings & 6% Existing Sq FT per year are electrified. This action influences an increase in Commercial buildings electricity emissions.</td>
</tr>
<tr>
<td>Residential Building Electrification</td>
<td>10% EB Electrified</td>
<td>147,066</td>
<td>10% of existing SF per year is electrified. This action influences an increase in Residential buildings electricity emissions.</td>
</tr>
</tbody>
</table>

Village of Nyack

HIA Overview

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Net Reduction (MT CO2e)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Decarbonization</td>
<td>Custom</td>
<td>4,025</td>
<td>The change in carbon intensity (kg CO2/MWh) from the baseline year to 2030. The 2030 carbon intensity was acquired from Custom input % reduction. This equates to a 58% reduction in Grid Carbon Intensity.</td>
</tr>
<tr>
<td>High Level VMT Reduction</td>
<td>Moderate (5% VMT Reduction)</td>
<td>118</td>
<td>5% Reduction in total VMT</td>
</tr>
<tr>
<td>On-Road Electric Vehicles Adoption</td>
<td>Moderate (4.5% Annual Growth)</td>
<td>480</td>
<td>22.5% of VMT is EV by 2030. This action influences an increase in Residential & Commercial buildings electricity emissions.</td>
</tr>
<tr>
<td>Commercial Building Efficiency</td>
<td>10% EB Renovated</td>
<td>493</td>
<td>10% of all SF (existing) per year is reduced by 20% (energy)</td>
</tr>
<tr>
<td>Residential Building Efficiency</td>
<td>10% EB Renovated</td>
<td>207</td>
<td>10% of all SF (existing) per year is reduced by 20% (energy)</td>
</tr>
<tr>
<td>Commercial Building Electrification</td>
<td>10% EB Electrified</td>
<td>225</td>
<td>10% of existing SF per year is electrified. This action influences an increase in Commercial buildings electricity emissions.</td>
</tr>
<tr>
<td>Residential Building Electrification</td>
<td>10% EB Electrified</td>
<td>948</td>
<td>10% of existing SF per year is electrified. This action influences an increase in Residential buildings electricity emissions.</td>
</tr>
</tbody>
</table>
Preface

- There is no one-size-fits-all approach and nobody has all of the right answers
 - Nothing presented here is meant to be prescriptive—we aim to provide guiding principles, examples, and possible steps
 - One community’s process may not be completely replicable or appropriate for yours
Preface

- Be motivated by accountability and commitment to change
 - Strive for improvement, not perfection
 - Be transparent about shortcomings and failures
Who are your stakeholders?

Now is the time to start reaching out to key people who should be involved.
Who is the team?

- CAPI Working Team (You)
 - Meets regularly, with clear roles
 - Form working groups based on interest/expertise, as necessary
- Government Department Staff
- Wider Community
 - One-off involvement (e.g. tabling at community events, open houses)
 - Platforms e.g. Bang the Table, surveys
Rigorous Stakeholder Engagement

Stakeholders are meaningfully involved in:

● Helping define the problem
● Assessing the community’s needs
● Organizing and leading engagement activities
● Imagining and proposing potential solutions
● Dialogues with elected officials and decision makers
● Creating and/or conducting an “equity impact assessment” to assess impacts of potential policy/project options
● Implementing solutions
● Monitoring progress and evaluating outcomes
Part 1 Table Exercise
15 min
Part 2: Highly Implementable Climate Actions
Planning a Community Workshop

Agenda should include, at minimum:

- A presentation of key GHG Inventory takeaways
- Activities that allow for participants to provide input on potential solutions - make it fun and engaging
 - Recommend breakout groups + open-ended prompts related to different sectors + notetaker & facilitator in each room/table
Asset Mapping: My Maps Activity
<table>
<thead>
<tr>
<th>Action</th>
<th>How will this be implemented?</th>
<th>Implementation timescale</th>
<th>Potential GHG reductions</th>
<th>Cost/savings per MTCO₂e reduced</th>
<th>Co-benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work with PGE to become "net zero" from electricity by 2035</td>
<td>C</td>
<td></td>
<td></td>
<td>Cost data unavailable</td>
<td></td>
</tr>
<tr>
<td>Engage NW Natural to develop strategy for becoming "net zero" from natural gas by 2040</td>
<td>C</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Adopt a commercial and residential building energy score program based on the City of Portland’s</td>
<td>L C</td>
<td></td>
<td></td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td>Develop micro-grids and energy storage systems in conjunction with purchasing renewable power</td>
<td>SF P</td>
<td></td>
<td></td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td>Work with PGE to implement demand response programs</td>
<td>C</td>
<td></td>
<td></td>
<td>Cost data unavailable</td>
<td></td>
</tr>
<tr>
<td>Advocate for more energy efficiency state building codes</td>
<td>SF</td>
<td></td>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>Incentivize property owners to encourage multifamily housing energy efficiency upgrades</td>
<td>L C</td>
<td></td>
<td></td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td>Develop a community solar project</td>
<td>C</td>
<td></td>
<td></td>
<td>$$</td>
<td></td>
</tr>
</tbody>
</table>
MITIGATION STRATEGIES | Building Energy and Efficiency

<table>
<thead>
<tr>
<th>Action</th>
<th>How will this be implemented?</th>
<th>Implementation timescale</th>
<th>Potential GHG reductions</th>
<th>Cost/savings per MTCO₂e reduced</th>
<th>Co-benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work with PGE to become “net zero” from electricity by 2035</td>
<td>C</td>
<td></td>
<td></td>
<td>Cost data unavailable</td>
<td></td>
</tr>
</tbody>
</table>

City operations
- City law/code
- City educates
- City partners for collective action

Addresses Milwaukee’s superactions
- Opportunity for social equity
- Mitigates and adapts in one action

City partners to lobby state/feds
- Short term: $ net savings
- Mid term: $ net expenditure
- Long term: high

Community support
- Leverages existing efforts
- Short term: $ net savings
- Mid term: $ net expenditure
- Long term: low
Advanced Ann Arbor, MI

STRATEGY 1: Power Our Electrical Grid with 100% Renewable Energy

3. DEVELOP COMMUNITY SOLAR PROGRAM

Not all residents and businesses are able to install solar on their property. This may be because of impractical solar exposure, not owning their homes, or financial barriers associated with renewable energy. To provide options to all who want to invest in solar locally, the City of Ann Arbor, in partnership with our utility, will create and support a robust community solar program which allows solar installations on public properties. Community solar programs allow residents and businesses to purchase solar panels on an existing solar farm and receive an on-site credit to their power bill. Stale legislation is needed to enable community solar programs but the City is already working with state legislators to move this idea forward.

Vision for Developing Community Solar Program

By 2030, 11 MW of community solar has been established locally. As our community builds demand for community solar, the landfill solar site is opened for public subscriptions, and the City’s demand for renewable energy is enabled to create even more local renewable energy generation.

Party Responsible for Implementation
Office of Sustainability and Innovations

Catalysts / Project Co-Designers
- DRC Energy
- State of Michigan
- Partner organizations

Equity Impacts
Community solar primarily benefits those without the ability to install their own renewable energy projects.

Indicators of Success / Goals
By 2030, 11 MW of new renewable energy has been created and subscribed through a community solar program.

Assumptions
- Community solar is owned by the state
- Demand for community solar reaches at least 11 MW by 2030
- On-site financing is possible

Target Demographic
Those who face barriers to installing solar on the buildings they inhabit, including renters, low-income residents, and those with shaded or obstructed roofs.

Timeline and Initial Actions

2021
- Enacting legislation passed and solar grid code added to OSM Energy
- Project meets grid standard and establishes community solar program

2022
- Landfill solar program launched

2024
- Expansion of community solar program launched, includes installation of 11 MW in community solar program

2026
- Landfill solar program and on-site community solar program will match

ACTION 3: Develop Community Solar

Cost Over 10 Years
(Initial, Hard, and Soft Costs)

Costs to the City are $205,000

Greenhouse Gas
Reduction Potential

By 2030, the Develop Community Solar Program strategy will achieve all its potential greenhouse gas emission reductions.

The figure below shows the total emissions reduction potential of on-site renewable energy generation (in light blue) assuming the community and university participants in the program.
Vision for Developing Community Solar Program

By 2030, 11 MW of community solar has been established locally. As our community builds demand for community solar, the landfill solar site in opened for public subscriptions and the City’s demand for renewable energy is moved to create even more local renewable energy generation.

Party Responsible for Implementation
Office of Sustainability and Innovations

Equity Impacts
Community solar primarily benefits those without the ability to install their own renewable energy projects.

Collaborators / Project Co-Designers
- DTE Energy
- State of Michigan
- Partner organizations

Indicators of Success / Goals
By 2030, 11MW of new renewable energy has been created and is subscribed through a community solar program.

Assumptions
- Community solar is enabled at the state
- Demand for community solar reaches at least 11MW by 2030
- On-bill financing is possible

Target Demographic
Those who face barriers to installing solar on the buildings they inhabit, including renters, low-income residents, and those with shaded or obstructed roofs
Timeline and Initial Actions

2021
Enabling legislation passed and City works with DTE Energy to create local pilot community solar program.

2022
Local pilot program launches.

2024
Expansion of community solar program locally. Includes recruitment of individuals into program.

2026
Landfill solar site opens up for community subscriptions given the success of the initiative. Allows City to take its demand to stimulate more renewable energy development.
ACTION 3: Develop Community Solar

Cost Over 10 Years (Staffing, Hard, and Soft Costs)

Costs to the City are **$205,000** over 10 years to help administer the program. If the City becomes an anchor tenant, the costs would rise.

By 2026, the Develop Community Solar Program strategy will have achieved all of its potential greenhouse gas emissions reductions.

Greenhouse Gas Reduction Potential

11,500 metric tons carbon dioxide equivalent (.5% of community-wide emissions)

Advanced
Part 2 Exercise:
Prioritize Your Actions and Report Out
10 min + 3 min presentation per group
Kale Roberts (Primary)
ICLEI USA Senior Program Officer
845-464-3682

Caroline Dickey (Technical Support)
ICLEI USA Program Associate, Low Emissions
caroline.dickey@iclei.org